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Abstract: Using control of translational motion of an elastic object with linear-viscous
resistance due to the selection of the type and parameters of control the absolute quiescence
of the object at the end of movement is provided.
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Introduction.

There are studies on the control of oscillations of linear and nonlinear mechanical
systems in absolute motion [1, 2]. Works [3, 4] are devoted to optimal control of translational
and rotational movements of the elastic systems with finite or infinite number of degrees of
freedom. There is a need to use such special movement controls, in which fluctuations of
transported objects are significantly reduced or completely eliminated, i.e. in an acceptable
minimum possible time of translational motion the relative or absolute quiescence at the end
of the movement is achieved [5 ].

The purpose of the research is the accounting of the linear-viscous resistance in
relative motion with optimal translational motion of an elastic object. Here, the optimal
(purposeful) movement means the existence of a functional-criterion that receives a stationary
value in the actual movement [3, 4].

Optimal control of the translational motion with U_(t) =asin®(pt). It should be
noted that control U_(t) = asin®(pt) is the solution of the differential equation

du,
dt?

2

+1opzd#+9p4ue =0
dt

considering boundary conditions

t=0, Ue0)=0, U,(0)=0; t=T/4, Us(T/4)=a, U,(T/4)=0.

If we double integrate control U_(t) =asin®(pt) considering additional boundary
conditions

t=0, Se(0)=0, Ve(0)=0; t=T, Se(T)=L,

and after determining the arbitrary constants the expressions for the displacement, velocity
and acceleration of translational motion come:

Ue(t) = 377!— sin 3 2r t), Ve (t) = L CoS 3(2_7Tt) _ 3005(2_ﬂt) + 2 ,
T T 2T T T
Se(t)=—L 12ﬂt—TSin3(2—ﬂt)—6T sin (Z—Ht) _
12T T T

At L=1m;T=2s graphics Ue(t), Ve(t), Se(t) are depicted in figure 1.
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Fig. 1. Translational motion graphics for U,(t) = asin3(pt)

The graphics show that at time t = T displacement is equal S¢(T) = L, velocity and
acceleration respectively are Ve(T) = 0, Ue(T) = 0, that is the object is brought into the
translational quiescence. As previously, this control is applicable to the displacement of an
elastic object, according to the theory of moments, taking into account reasonable motion
time 7. Hereat n =0 the solution of the equation

dZXr dx 2 . 3
+2n—L+k“x, =—asin’(pt
at2 dt r a (pt)
is following:
3
X, (t) = —{&a—£+%(3k2 —27 pz)}sin pt+(p2 - kz)sin 3pt,
where

A= (k4 —10k2T 222 +1447% k;
B = 4k*T* —160k°T *z* +5707".

From moment ratios X, (T)=0, X (T)=0 at p =24/T and Kk = 2zn, /T itis
possible to find motion time 7, at which relative quiescence of the elastic system is achieved.

After transformation from moment ratios (X (T)=0 x.(T)=0) we obtain
transcendental equations (graphics are depicted in figure 2)

S;(n) =sin(22ny) =0, S,(n)=cos(2zn;)-1=0,

which have following acceptable (for this task) conjoint roots n; =2, 3, 4,... For example, for

270,

 k=4r, azgl'—ﬂ relative motion graphics x,(t) and X, (t), depicted in

n=4,T= 12

figure 3, show that relative quiescence comes at moment of time t = 7; in combination with
the translational quiescence the required absolute quiescence of the moving elastic object is
achieved.
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Fig. 2. Moment ratios graphics
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Fig. 3. Relative motion graphics using U, (t) = asin®(pt) (n=0)

Conclusions. 1. The procedure for finding conjoint roots of transcendental equations
that represent the moment ratios for the system with linear-viscous resistance can be
eliminated by using the algorithm of the inverse task of dynamics, that is, finding the control
to implement the "ideal” motion. 2. Examined approach can be applied to a wide class of
skew-symmetric controls, optimality of which is justified by using the reverse principle, thus
analytical control function corresponds to the Euler equation of the functional — optimality
criterion, which takes stationary value in time interval of motion of the object.
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