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Abstract: Using control of translational motion of an elastic object  with linear-viscous 
resistance due to the selection of the type and parameters of control the absolute quiescence 
of the object at the end of movement is provided.  
Key words: elastic object, translational optimal movement, linear-viscous resistance, inverse 
task of dynamics.   

Introduction.  
There are studies on the control of oscillations of linear and nonlinear mechanical 

systems in absolute motion [1, 2]. Works [3, 4] are devoted to optimal control of translational 
and rotational movements of the elastic systems with finite or infinite number of degrees of 
freedom. There is a need to use such special movement controls, in which fluctuations of 
transported objects are significantly reduced or completely eliminated, i.e. in an acceptable 
minimum possible time of translational motion the relative or absolute quiescence at the end 
of the movement is achieved [5 ]. 

The purpose of the research is the accounting of the linear-viscous resistance in 
relative motion with optimal translational motion of an elastic object. Here, the optimal 
(purposeful) movement means the existence of a functional-criterion that receives a stationary 
value in the actual movement [3, 4]. 

Optimal control of the translational motion with )(sin)( 3 ptatUe  . It should be 
noted that control )(sin)( 3 ptatUe   is the solution of the differential equation 
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considering boundary conditions  

t = 0,      Ue(0) = 0,    eU (0) = 0;    t = T/4,   Ue(T/4) = a,    eU (T/4) = 0.  

If we double integrate control )(sin)( 3 ptatUe   considering additional boundary 
conditions  

t = 0,   Se(0) = 0,   Ve(0) = 0;  t = T,   Se(T) = L, 

and after determining the arbitrary constants the expressions for the displacement, velocity 
and acceleration of translational motion come:  
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At  L = 1 m; T = 2 s  graphics  Ue(t), Ve(t), Se(t)  are depicted in figure 1.  
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Fig. 1. Translational motion graphics for  )(sin)( 3 ptatUe   

 
The graphics show that at time  t = T displacement is equal Se(T) = L, velocity and 

acceleration respectively are Ve(T) = 0, Ue(T) = 0, that is the object is brought into the 
translational quiescence. As previously, this control is applicable to the displacement of an 
elastic object, according to the theory of moments, taking into account reasonable motion 
time Т.  Here at  n = 0  the solution of the equation  
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is following: 

    ,3sinsin2736)( 2222
3

ptkpptpk
B
a

A
aptxr 








  

 

where  

  ;14410 42224 kTkkA    

.5701604 422244   TkTkB  

From moment ratios 0)(,0)(  TxTx rr    at  p = 2π/T  and   k = 2πn1 /T  it is 
possible to find motion time Т, at which relative quiescence of the elastic system is achieved.    

After transformation from moment ratios ( 0)(,0)(  TxTx rr  ) we obtain 
transcendental equations (graphics are depicted in figure 2) 
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which have following acceptable (for this task) conjoint roots  n1 = 2, 3, 4,… For example, for     

1n = 4, Т = 
k
n12

, k = 4 , 2
3
T
La 

  relative motion graphics )(txr  and )(txr , depicted in 

figure 3, show that relative quiescence comes at moment of time  t = Т;  in combination with 
the translational quiescence the required absolute quiescence of the moving elastic object is 
achieved. 
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Fig. 2. Moment ratios graphics 
 
 

 
 

Fig. 3. Relative  motion graphics using )(sin)( 3 ptatUe    (n = 0) 
 
Conclusions. 1. The procedure for finding conjoint roots of transcendental equations 

that represent the moment ratios for the system with linear-viscous resistance can be 
eliminated by using the algorithm of the inverse task of dynamics, that is, finding the control 
to implement the "ideal" motion. 2. Examined approach can be applied to a wide class of 
skew-symmetric controls, optimality of which is justified by using the reverse principle, thus 
analytical control function corresponds to the Euler equation of the functional – optimality 
criterion, which takes stationary value in time interval of motion of the object. 
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